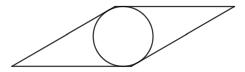
Пробный ЕГЭ №6 по математике

№1

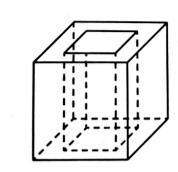

Решите уравнение $\sin\frac{\pi(2x+7)}{6} = -\frac{\sqrt{3}}{2}$. В ответе запишите наибольший отрицательный корень.

№2

Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 2, но не дойдя до отметки 11.

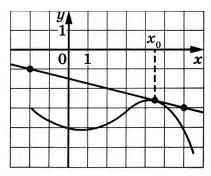
<u>№3</u>

Радиус окружности, вписанной в ромб, равен 1,5. Найдите сторону ромба, если один из его углов равен 30°.



№4

Найдите 5(4p(x+2) - p(4x)), если p(x) = x - 2.


№5

Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,6 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба.

№6

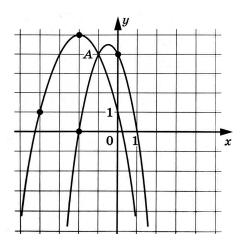
На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

1

№7

Амплитуда колебаний маятника зависит от частоты вынуждающей силы и определяется по формуле

$$A(\omega) = \frac{A_0 \omega_p^2}{\left|\omega_p^2 - \omega^2\right|},$$


где ω — частота вынуждающей силы (в с $^{-1}$), A_0 — постоянный параметр, $\omega_p=330$ с $^{-1}$ — резонансная частота. Найдите максимальную частоту ω , меньшую резонансной, для которой амплитуда колебаний превосходит величину A_0 не более чем на 80%. Ответ дайте в с $^{-1}$.

№8

Расстояние между городами A и B равно 84 км. Из города A в город B выехал автомобиль, а через 30 минут следом за ним со скоростью 65 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах.

№9

На рисунке изображены графики функций $f(x) = -2x^2 - 2x + 4$ и $g(x) = ax^2 + bx + c$, которые пересекаются в точках A(-1;4) и $B(x_0;y_0)$. Найдите x_0 .

<u>№10</u>

В коробке 6 синих, 9 красных и 10 черных носков. Случайным образом выбирают два носка. Найдите вероятность того, что выбранные носки окажутся разноцветными

№11

Найдите наименьшее значение функции $y = (x+4)^2 e^{-4-x}$ на отрезке [-5; -3].

N2

а) Решите уравнение

$$\frac{2\sin^2 x - \sin x}{2\cos x - \sqrt{3}} = 0$$

2

б) Найдите все его корни, принадлежащие отрезку $\left[\frac{3\pi}{2}; 3\pi\right]$.

№13

Дана правильная четырехугольная пирамида MABCD с основанием ABCD, стороны основания которой равны $5\sqrt{2}$. Точка L — середина ребра MB. Тангенс угла между прямыми DM и AL равен $\sqrt{2}$.

- а) Пусть O центр основания пирамиды. Докажите, что прямые AO и LO перпендикулярны.
- б) Найдите высоту данной пирамиды.

№14

Решите неравенство

$$\log_3 \frac{1}{x} + \log_3(x^2 + 3x - 9) \le \log_3\left(x^2 + 3x + \frac{1}{x} - 10\right)$$

№15

1-го августа 2022 года планируется взять кредит на 3 года на некоторую сумму. Условия его возврата таковы:

- в январе каждого года долг возрастает на некоторое число процентов по сравнению с концом предыдущего года;
 - в июле каждого года должна быть сделана выплата;
- 1-го августа каждого года, кроме первого, долг должен быть на одну и ту же величину меньше долга на
 1-е августа предыдущего года;
 - к концу июля 2025 года долг должен быть полностью погашен.

Известно, что процентная ставка в каждый год, кроме первого, ровно на 1% больше процентной ставки в предыдущем году. Найдите наибольшее значение процентной ставки в первый год, если переплата по данному кредиту не превосходит трети от изначально взятой суммы.

№16

В трапеции ABCD боковая сторона AB перпендикулярна основаниям. Из точки A на сторону CD опустили перпендикуляр AH. На стороне AB отмечена точка E так, что прямые CD и CE перпендикулярны.

- а) Докажите, что прямые BH и ED параллельны.
- б) Найдите отношение BH : ED, если $\angle BCD = 150^{\circ}$.

№17

Найдите все значения a, при каждом из которых система уравнений

$$\begin{cases} (x-a)^2 + y^2 = 1\\ y = |x-3| + \frac{1}{2} \end{cases}$$

имеет ровно одно решение.

№18

На доску слева направо в ряд выписали пять натуральных чисел. Затем между каждой парой соседних чисел a_i и a_{i+1} записали разность $a_{i+1} - a_i$. Оказалось, что каждая из разностей, кроме самой левой, ровно на единицу больше той разности, которая записана слева от нее (т.е. $a_{i+1} - a_i$ на единицу больше, чем $a_i - a_{i-1}$).

- а) Может ли сумма пяти чисел, записанных изначально, равняться 300?
- б) Может ли сумма пяти чисел, записанных изначально, равняться 426?
- в) Найти наибольшее возможное значение самого правого из чисел, записанных изначально, если их сумма равна 100.