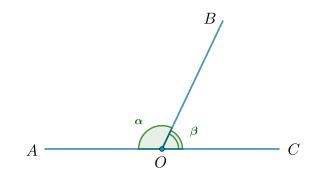
Краткий справочник по планиметрии для ОГЭ

1 Углы и прямые

1.1 Смежные углы

Два угла, у которых одна сторона общая, а две другие являются продолжениями одна другой, называются смежными. Сумма смежных углов равна 180°.

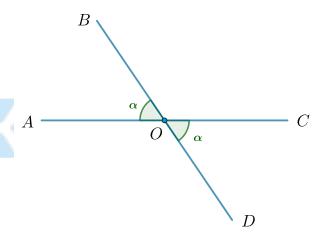
$$\angle AOB + \angle BOC = \alpha + \beta = 180^{\circ}$$



1.2 Вертикальные углы

Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого. Вертикальные углы равны.

$$\angle AOB = \angle COD$$



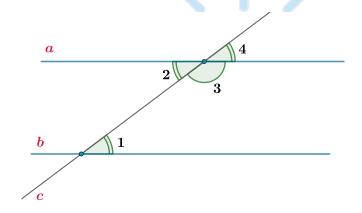
1.3 Свойства и признаки параллельных прямых

Три свойства: если $a \parallel b$ и c — секущая, то

- 1. $\angle 1 = \angle 2$ (накрест лежащие углы)
- 2. $\angle 1 = \angle 4$ (соответственные углы)
- 3. $\angle 1 + \angle 3 = 180^{\circ}$ (односторонние углы)

Три признака: $a \parallel b$ при секущей c, если:

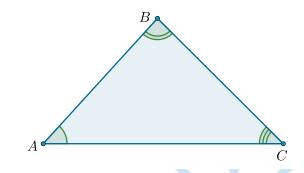
- 1. $\angle 1 = \angle 2$ (накрест лежащие углы)
- 2. $\angle 1 = \angle 4$ (соответственные углы)
- 3. $\angle 1 + \angle 3 = 180^{\circ}$ (односторонние углы)



1.4 Сумма углов треугольника

Сумма углов треугольника равна 180°.

$$\angle A + \angle B + \angle C = 180^{\circ}$$

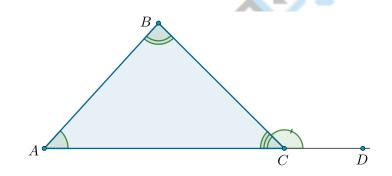


1.5 Внешний угол треугольника

Внешним угол треугольника называется угол, смежный с каким-нибудь внутренним углом треугольника.

Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

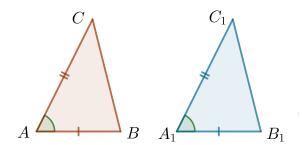
$$\angle BCD = 180^{\circ} - \angle C = \angle A + \angle B$$



2 Признаки равенства треугольников

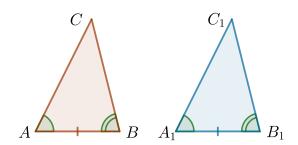
2.1 Первый признак (по двум сторонам и углу между ними)

Если
$$AB = A_1B_1$$
, $AC = A_1C_1$ и $\angle A = \angle A_1$, то $\triangle ABC = \triangle A_1B_1C_1$.



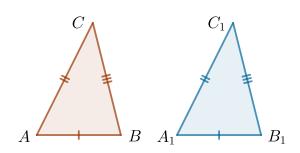
2.2 Второй признак (по стороне и двум прилежащим к ней углам)

Если
$$AB = A_1B_1$$
, $\angle A = \angle A_1$ и $\angle B = \angle B_1$, то $\triangle ABC = \triangle A_1B_1C_1$.



2.3 Третий признак (по трем сторонам)

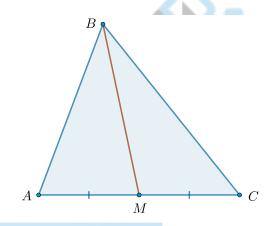
Если
$$AB = A_1B_1$$
, $AC = A_1C_1$ и $BC = B_1C_1$, то $\triangle ABC = \triangle A_1B_1C_1$.



3 Медиана, биссектриса и высота треугольника

3.1 Медиана треугольника

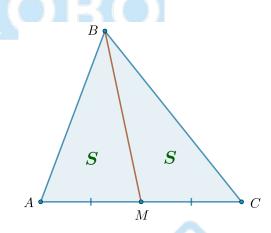
Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется **медианой треугольника**.



3.2 Медиана и площади

Медиана треугольника делит его на два треугольника, равных по площади (равновеликих):

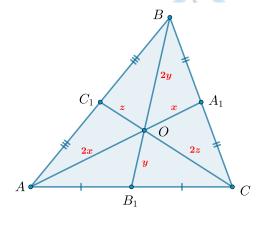
$$S_{\triangle ABM} = S_{\triangle CBM}$$



Точка пересечения медиан

Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины:

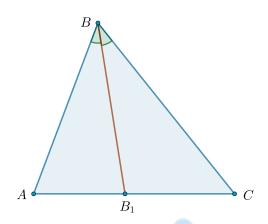
$$AO: OA_1 = BO: OB_1 = CO: OC_1 = 2:1$$



3.3 Биссектриса треугольника

Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположкной стороны, называется **биссектрисой треугольника**.

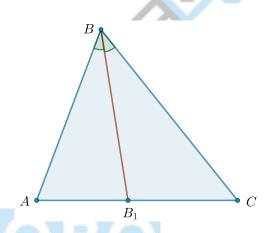
Напомним, что **биссектрисой угла** называется луч, исходящий из вершины угла и делящий его на два равных.



Главное свойство биссектрисы

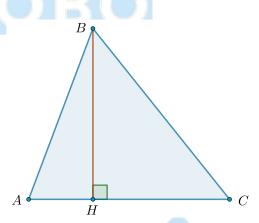
Пусть BB_1 — биссектриса в треугольнике ABC. Тогда

$$\frac{AB}{BC} = \frac{AB_1}{B_1C}$$



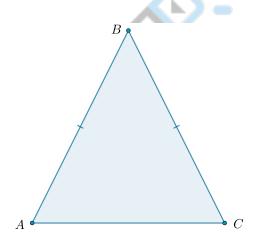
3.4 Высота треугольника

Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника.



4 Равнобедренный треугольник

Треугольник называется **равнобедренным**, если две его стороны равны. Равные стороны называются **боковыми сторонами**, а третья сторона — **основанием** равнобедренного треугольника.

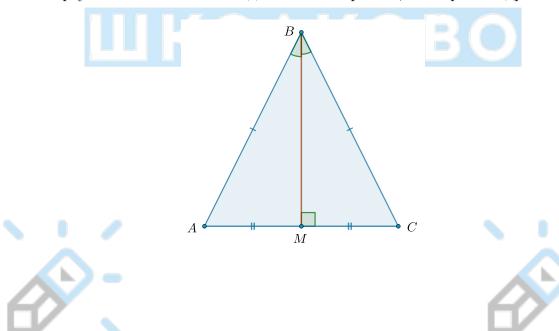


4.1 Свойства равнобедренного трегуольника

- 1. В равнобедренном треугольнике углы при основании равны.
- 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
- 3. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
- 4. Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.

4.2 Признаки равнобедренного трегуольника

- 1. Если в треугольнике равны два угла, то он равнобедренный.
- 2. Если в треугольнике биссектриса совпадает с медианой, то он равнобедренный.
- 3. Если в треугольнике медиана совпадает с высотой, то он равнобедренный.
- 4. Если в треугольнике высота совпадает с биссектриссой, то он равнобедренный.



5 Прямоугольный треугольник и его свойства

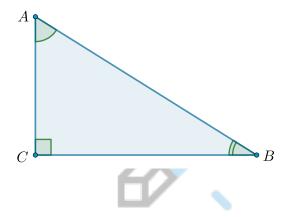
5.1 Что такое прямоугольный треугольник?

Прямоугольный треугольник — это треугольник, в котором один угол прямой (то есть 90°).

$$\angle C = 90^{\circ} = \angle A + \angle B$$

Гипотенуза — это сторона прямоугольного треугольника, лежащая против прямого угла.

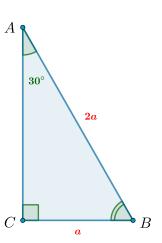
Катеты — это стороны прямого угла в прямоугольном треугольнике



Свойство 1

Катет, лежащий против угла 30°, равен половине гипотенузы.

Если катет равен половине гипотенузы, то он лежит против угла 30°.

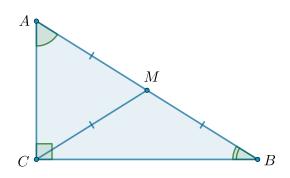


Свойство 2

Медиана треугольника, проведенная из вершины прямого угла, равна половине гипотенузы:

$$BM = \frac{1}{2}AC = AM = MC$$

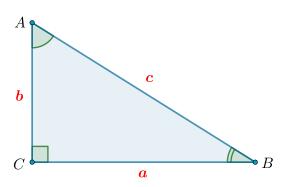
Таким образом, получаются два равнобедренных треугольника: $\triangle ABM$ и $\triangle CBM$.



6 Теорема Пифагора

В прямоутольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

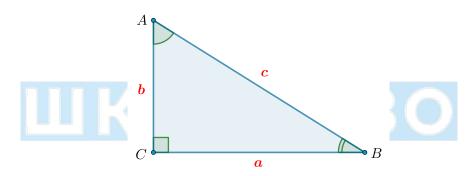
$$c^2 = a^2 + b^2$$



7 Тригонометрия в прямоугольном треугольнике

1. Косинусом острого угла прямоугольного треугольника называется отношение длины прилежащего к этому углу катета к длине гипотенузы.

$$\cos \angle A = \frac{AC}{AB} = \frac{b}{c}, \quad \cos \angle B = \frac{BC}{AB} = \frac{a}{c}$$



2. Синусом острого угла прямоугольного треугольника называется отношение длины противолежащего этому углу катета к длине гипотенузы.

$$\sin \angle A = \frac{BC}{AB} = \frac{a}{c}, \quad \sin \angle B = \frac{AC}{AB} = \frac{b}{c}$$

3. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего этому углу катета к прилежащему.

$$\operatorname{tg} A = \frac{BC}{AC} = \frac{a}{b}, \quad \operatorname{tg} B = \frac{AC}{BC} = \frac{b}{a}$$

4. Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего к этому углу катета к противолежащему.

$$\operatorname{ctg} A = \frac{AC}{BC} = \frac{b}{a}, \quad \operatorname{ctg} B = \frac{BC}{AC} = \frac{a}{b}$$

$$\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}, \quad \operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$$

5.

6. Таблица синусов, косинусов, тангенсов и котангенсов углов из первой четверти:

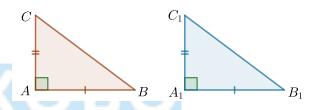
	30°	45°	60°
sin	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tg	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$
ctg	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$

7. Основное тригонометрическое тожество:

$$\sin^2\alpha + \cos^2\alpha = 1$$

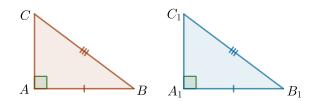
8.1 По двум катетам

Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.



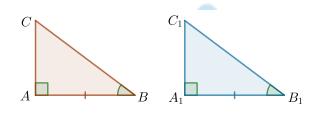
8.2 По катету и гипотенузе

Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.



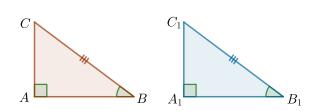
8.3 По катету и острому углу

Если катет и прилежащий (противолежащий) к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему (противолежащему) к нему острому углу другого, то такие треугольники равны.



8.4 По гипотенузе и острому углу

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.



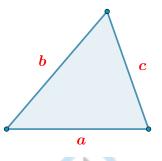
9 Площадь треугольника

9.1 Формулы площади трегуольника

1. Формула Герона площади треугольника

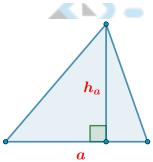
$$S_{\triangle} = \sqrt{p(p-a)(p-b)(p-c)},$$

где p — полупериметр треугольника.



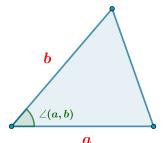
2. Площадь треугольника равна полупроизведению основания на высоту:

$$S_{\triangle} = \frac{a \cdot h_a}{2}$$



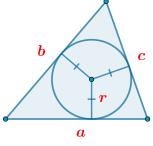
3. Площадь треугольника равна полупроизведению сторон на синус угла между ними:

$$S_{\triangle} = \frac{1}{2} ab \cdot \sin \angle (a, b)$$



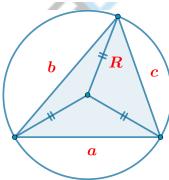
4. Площадь треугольника равна произведению полупериметра на радиус вписанной окружности:

$$S_{\triangle} = p \cdot r = \frac{a+b+c}{2} \cdot r$$



5. Площадь треугольника равна произведению трех его сторон, деленному на учетверенный радиус описанной окружности:

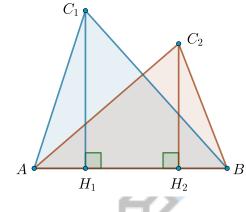
$$S_{\triangle} = \frac{abc}{4R}$$



9.2 Теоремы о площадях треугольников

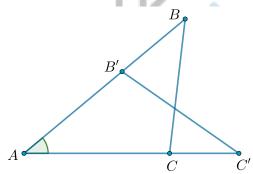
Площади треугольников, имеющих общую сторону, относятся как высоты, проведенные к этой стороне:

$$\frac{S_{\triangle ABC_1}}{S_{\triangle ABC_2}} = \frac{C_1 H_1}{C_2 H_2}$$



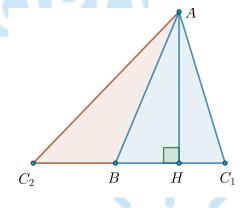
Площади треугольников, имеющих общий угол, относятся как произведения сторон, образующих этот угол:

$$\frac{S_{\triangle ABC}}{S_{\triangle AB'C'}} = \frac{AB \cdot AC}{AB' \cdot AC'}$$



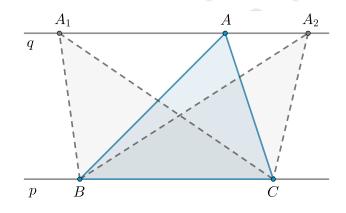
Площади треугольников, имеющих общую высоту, относятся как основания, к которым эта высота проведена:

$$\frac{S_{\triangle ABC_1}}{S_{\triangle ABC_2}} = \frac{BC_1}{BC_2}$$



Если прямые p и q параллельны, то

$$S_{\triangle ABC} = S_{\triangle A_1BC} = S_{\triangle A_2BC}$$



10 Теорема Фалеса

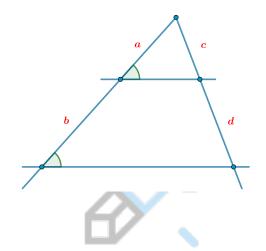
10.1 Прямая теорема Фалеса

Параллельные прямые высекают на сторонах угла пропорциональные отрезки:

$$\frac{a}{b} = \frac{c}{d}$$

10.2 Обратная теорема Фалеса

Если прямые высекают пропорциональные отрезки на сторонах угла, то прямые параллельны.

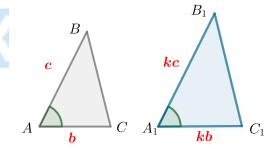


11 Признаки подобия треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны, лежащие против равных углов, относятся друг к другу с одним и тем же коэффициентом.

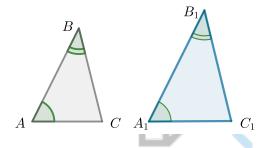
11.1 По отношению двух сторон и углу между ними

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы между ними равны, то такие треугольники подобны.



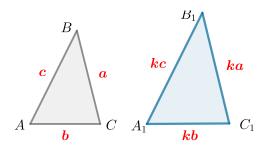
11.2 По двум углам

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.



11.3 По отношению трех сторон

Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.



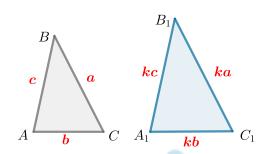
12 Отношение площадей подобных треугольников

Отношение площадей подобных треугольников равно квадрату коэффициента подобия:

$$\frac{S_{\triangle A_1 B_1 C_1}}{S_{\triangle ABC}} = k^2$$

Отношение периметров подобных треугольников равно коэффициенту подобия:

$$\frac{P_{\triangle A_1 B_1 C_1}}{P_{\triangle ABC}} = k$$



13 Средняя линий треугольника

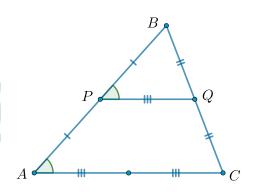
Средняя линия треугольника — отрезок, соединяющий середины двух сторон треугольника.

1. Средняя линия треугольника равна половине третьей стороны и параллельна ей, то есть

$$PQ = \frac{1}{2}AC$$
 и $PQ \parallel AC$

2. Средняя линия треугольника отсекает от треугольника подобный ему треугольник:

$$\triangle PBQ \sim \triangle ABC$$



14 Высота прямоугольного треугольника

1. Высота из вершины прямого угла треугольника делит его на два треугольника, подобных исходному:

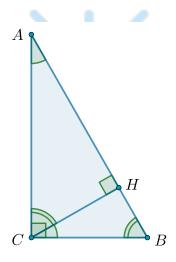
$$\triangle ABC \sim \triangle AHC \sim \triangle BHC$$

2. Квадрат высоты из прямого угла треугольника равен произведению длин отрезков, на которые она делит гипотенузу:

$$CH^2 = AH \cdot BH$$

3. Высота из прямого угла треугольника равна произведению длин катетов, деленному на длину гипотенузы:

$$CH = \frac{AC \cdot BC}{AB}$$



15 Параллелограмм

Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны.

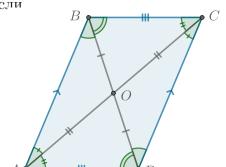
15.1 Признаки и свойства параллелограмма

Признаки. Четырехугольник является параллелограммом, если

- 1. противоположные стороны попарно равны.
- 2. две стороны равны и параллельны.
- 3. диагонали точкой пересечения делятся пополам.

Свойства параллелограмма:

- 1. противоположные стороны попарно равны.
- 2. противоположные углы попарно равны.
- 3. диагонали точкой пересечения делятся пополам.



Для примера **докажем один из признаков**. Пусть две стороны четырехугольника равны и параллельны. Тогда это обязательно должны быть противоположные стороны.

Пусть AD = BC и $AD \parallel BC$. Проведем диагонали AC и BD, отметим их точку пересечения — точку O.

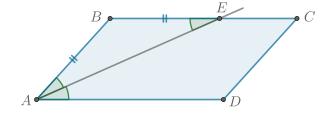
Рассмотрим треугольники BOC и DOA. В них BC = AD по условию, а $\angle OBC = \angle OCB$ и $\angle OAD = \angle ODA$ как накрест лежащие, образованные параллельными прямыми BC и AD. Тогда треугольники BOC и DOA равны по стороне и двум углам. В равных треугольниках соответственные элементы равны, следовательно, BO = DO и CO = AO.

Рассмотрим треугольники AOB и COD. В них попарно равны две стороны (BO = DO и CO = AO) и $\angle AOB = \angle COD$ как вертикальные углы. Тогда треугольники AOB и COD равны по двум сторонам и углу между ними. Следовательно, AB = CD.

Тогда ABCD — параллелограмм.

15.2 Биссектриса параллелограмма

Биссектриса AE параллелограмма ABCD отсекает от него равнобедренный треугольник, то есть AB = BE и $\angle BAE = \angle DAE = \angle BEA$.



15.3 Площадь параллелограмма

Площадь параллелоргамма равна произведению высоты и стороны, к которой она проведена:

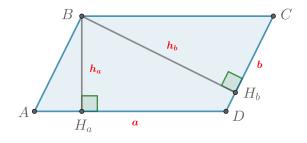
$$S = AD \cdot BH_a = a \cdot h_a = CD \cdot BH_b = b \cdot h_b$$

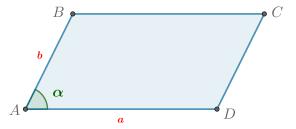
Площадь параллелограмма равна произведению сторон и синуса угла между ними:

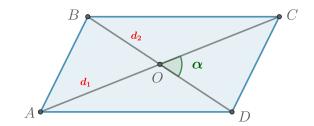
$$S = AB \cdot AD \cdot \sin \alpha = ab \cdot \sin \alpha$$

Площадь параллелограмма равна полупроизведению диагоналей и синуса угла между ними:

$$S = \frac{1}{2}AC \cdot BD \cdot \sin \alpha = \frac{1}{2} \cdot d_1 d_2 \cdot \sin \alpha$$







16 Ромб

Ромб — четырехугольник, у которого все стороны равны. Таким образом, всякий ромб является параллелограммом. Соответственно, ромб обладает всеми свойствами параллелограмма.

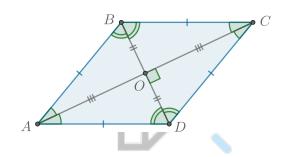
16.1 Признаки и свойства ромба

Признаки: параллелограмм является ромбом, если

- 1. диагонали взаимно перпендикулярны.
- 2. диагонали являются биссектрисами его углов.

Свойства ромба:

- 1. диагонали взаимно перпендикулярны.
- 2. диагонали являются биссектрисами его углов.



16.2 Площадь ромба

Так как ромб — это параллелограмм, то его площадь можно найти с помощью любой формулы, справедливой для параллелограмма. Следовательно, формула площади через диагонали примет следующий вид:

$$S = \frac{1}{2} \cdot AC \cdot BD \cdot \sin 90^{\circ} = \frac{1}{2} \cdot AC \cdot BD$$

17 Прямоугольник

Прямоугольник — параллелограмм, у которого хотя бы один угол прямой. Соответственно, прямоугольник обладает всеми свойствами параллелограмма.

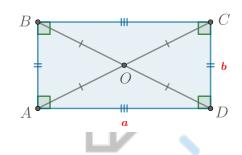
17.1 Признаки и свойства прямоугольника

Признаки прямоугольника:

- 1. Если у выпуклого четырехугольника все углы прямые, то он является прямоугольником.
- 2. Если у параллелограмма диагонали равны, то он является прямоугольником.

Свойство прямоугольника:

Диагонали прямоугольника равны.



17.2 Площадь прямоугольника

Площадь прямоугольника равна произведению длин его смежных сторон:

$$S = AD \cdot CD = ab$$

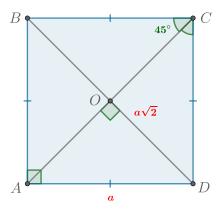
18 Квадрат

Квадрат — прямоугольник, у которого все стороны равны.

Альтернативное определение: квадрат — это ромб, у которого хотя бы один угол прямой. Соответственно, квадрат обладает всеми свойствами прямоугольника и ромба.

18.1 Свойства квадрата

- 1. Все стороны равны.
- 2. Все углы прямые.
- 3. Диагонали точкой пересечения делятся пополам.
- 4. Диагонали равны.
- 5. Диагонали взаимно перпендикулярны.
- 6. Диагонали делят углы квадрата пополам.
- 7. Диагональ квадрата со стороной a равна $a\sqrt{2}$.



18.2 Площадь квадрата

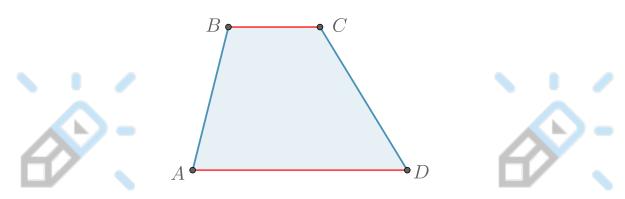
Так как квадрат — это прямоугольник, то площадь квадрата равна произведению длин его смежных сторон, то есть

$$S = AB \cdot AD = a^2$$

19 Трапеция

Трапеция — это выпуклый четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

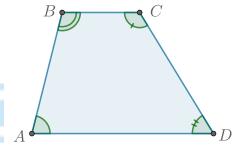
Параллельные стороны называются основаниями, а две другие — боковыми.



19.1 Свойства трапеции

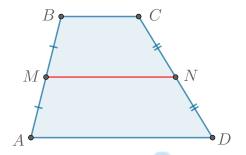
Сумма углов при боковой стороне равна 180°:

$$\angle A + \angle B = \angle C + \angle D = 180^{\circ}$$



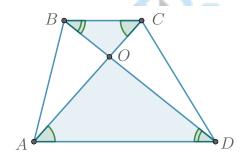
Средняя линия трапеции — отрезок, соединяющий середины боковых сторон трапеции. Она параллельна основаниям трапеции и равна их полусумме:

$$MN = \frac{1}{2} \left(AD + BC \right)$$



Пусть O — точка пересечения диагоналей трапеции. Тогда треугольники AOD и COB подобны с коэффициентом

$$k = \frac{AD}{BC}$$



19.2 Свойства и признаки равнобедренной трапеции

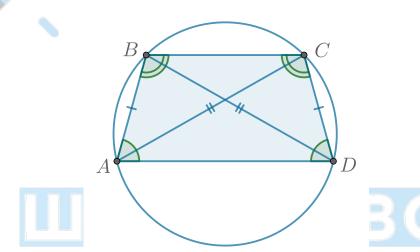
Если боковые стороны трапеции равны, то она равнобедренная.

Свойства:

- 1. В равнобедренной трапеции углы при любом основании равны.
- 2. В равнобедренной трапеции длины диагоналей равны.
- 3. Около равнобедренной трапеции можно описать окружность.

Признаки:

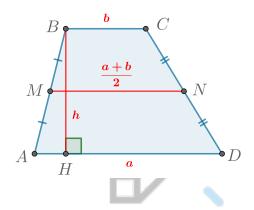
- 1. Если в трапеции равны углы при основании, то она равнобедренная.
- 2. Если диагонали трапеции равны, то она равнобедренная.
- 3. Если трапецию можно вписать в окружность, то она равнобедренная.



19.3 Площадь трапеции

Площадь трапеции равна произведению высоты и средней линии (полусуммы оснований):

$$S = \frac{a+b}{2} \cdot h$$



20 Окружность

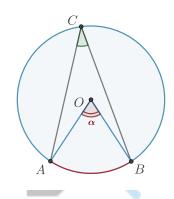
20.1 Центральные и вписанные углы

Центральным углом называется угол с вершиной в центре окружности. Пусть точки A и B лежат на окружности с центром в точке O. Тогда угол AOB — центральный.

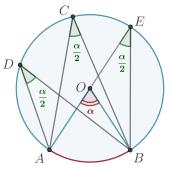
Градусная мера дуги

Пусть $\angle AOB = \alpha$. Градусной мерой дуги AB будем называть градусную меру центрального угла, который опирается на эту дугу. Тогда $AB = \alpha$.

Вписанным углом называется угол, вершина которого лежит на окружности, а его стороны пересекают эту окружность. Угол ACB — вписанный.

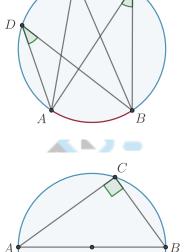


Все вписанные углы, опирающиеся на дугу AB, равны половине центрального угла, опирающегося на эту дугу.



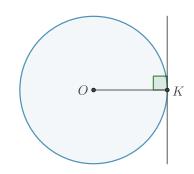
Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на диаметр окружности, равен 90° .

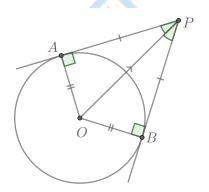


20.2 Окружность и касательные

Радиус, проведенный к точке касания, перпендикулярен касательной.

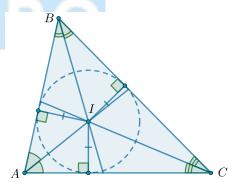


Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.



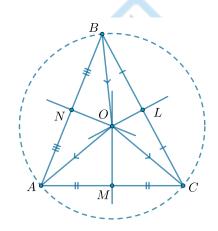
20.3 Центр вписанной окружности треугольника

Биссектрисы треугольника пересекаются в одной точке — центре вписанной окружности этого трегуольника.



20.4 Центр описанной окружности треугольника

Серединные перпендикуляры треугольника пересекаются в одной точке — центре описанной окружности этого трегуольника.



20.5 Вписанный четырехугольник

Вписанный четырехугольник — это четырехугольник, все вершины которого лежат на одной окружности.

Свойство №1

Сумма противоположных углов вписанного четырехугольника равна 180° .

Признак №1

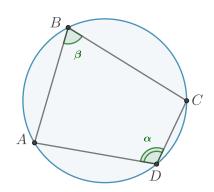
Если сумма противоположных углов четырехугольника равна 180°, то вокруг него можно описать окружность.

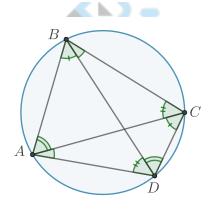
Свойство №2

Если четырехугольник вписанный, то углы, опирающиеся на одну сторону, равны

Признак №2

Если в четырехугольнике углы, опирающиеся на одну сторону, равны, то он вписанный.

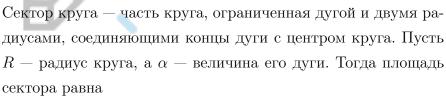




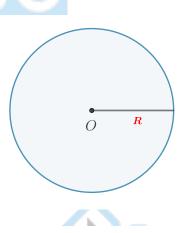
20.6 Площади круга и сектора

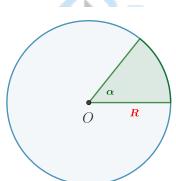
Пусть R — радиус круга. Тогда его площадь равна

$$S=\pi R^2$$



$$S = \pi R^2 \cdot \frac{\alpha}{360^{\circ}}$$

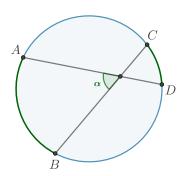




20.7 Теоремы о хордах, касательных и секущих

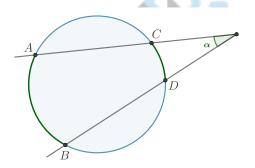
Угол между пересекающимися хордами окружности равен полусумме дуг, заключенных между ними:

$$\alpha = \frac{1}{2} \left(\widecheck{AB} + \widecheck{CD} \right)$$



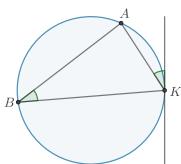
Угол между секущими, проведенными из одной точки к окружности, равен полуразности дуг, заключенных между ними:

$$\alpha = \frac{1}{2} \left(\widecheck{AB} - \widecheck{CD} \right)$$



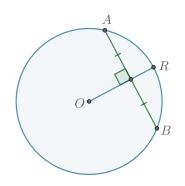
ШКОЛКОЕ

Угол между хордой и касательной равен вписанному углу, опирающемуся на дугу, отсеченную хордой.



Если радиус перпендикулярен хорде, то он делит ее пополам. Верно обратное: если радиус делит хорду пополам, то он ей перпендикулярен.

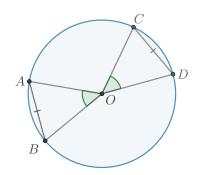
$$OR \perp AB \quad \Leftrightarrow \quad OR$$
 делит AB пополам



Равные хорды стягивают равные дуги.

Верно обратное: равные дуги стягиваются равными хордами.

$$\stackrel{\smile}{AB} = \stackrel{\smile}{CD} \quad \Leftrightarrow \quad AB = CD$$

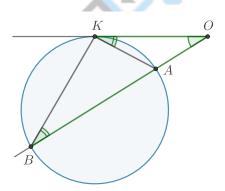


20.8 Подобные треугольники в окружностях

Если OK — касательная, где K — точка касания с окружностью, OB — секущая, A и B — ее точки пересечения с окружностью, то

$$\triangle OAK \sim \triangle OKB$$

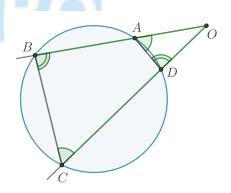
(Следствие: квадрат касательной равен произведению секущей на ее внешнюю часть)



Если OB и OC — секущие, пересекающие повторно окружность в точках A и D соответственно, то

$$\triangle OAD \sim \triangle OCB$$

(Следствие: для данной окружности произведение секущей на ее внешнюю часть — величина постоянная)

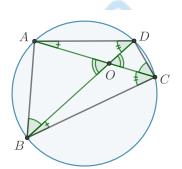


При пересечении хорд в окружности образуются две пары подобных треугольников:

$$\triangle AOB \sim \triangle DOC$$

$$\triangle AOD \sim \triangle BOC$$

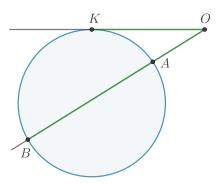
(Следствие: произведения отрезков хорд равны)



20.9 Отношения касательных, секущих и хорд

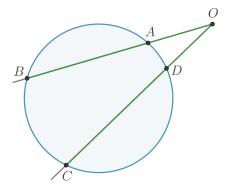
Квадрат касательной равен произведению секущей на ее внешнюю часть:

$$OK^2 = OA \cdot OB$$



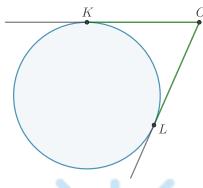
Для данной окружности и точки O вне окружности произведение секущей на ее внешнюю часть — величина постоянная:

$$OA \cdot OB = OD \cdot OC$$



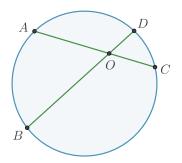
Отрезки касательных, проведенных из одной точки к окружности, равны:

$$OA = OB$$



Произведения отрезков пересекающихся хорд равны:

$$AO \cdot OC = BO \cdot OD$$

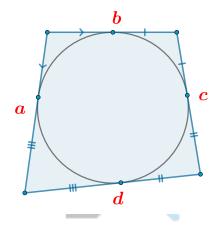


20.10 Описанный четырехугольник

Центр вписанной в четырехугольник (многоугольник) окружности лежит на пересечении биссектрис его углов.

- 1. Если в четырехугольник можно вписать окружность, то суммы противоположных сторон четырехугольника равны.
- 2. Если суммы противоположных сторон четырехугольника равны, то в него можно вписать окружность.

$$a+c=b+d$$



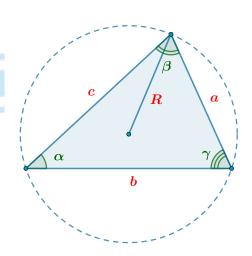
21 Теоремы синусов и косинусов

21.1 Теорема синусов

Для произвольного треугольника верно

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R,$$

где a,b и c — стороны треугольника, α,β и γ — соответственно противолежащие им углы, а R — радиус окружности, описанной около треугольника.



21.2 Теорема косинусов

Для треугольника со сторонами a, b и c и углом α , противолежащим стороне a, справедливо соотношение:

$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \alpha$$

Другими словами, квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

