Задача 12

а) Решите уравнение

$$\sqrt{\cos 3x} \cdot \sqrt{\cos x} = 1$$

б) Найдите все его корни, лежащие на отрезке $[0;2\pi]$.

Задача 13

Дана треугольная пирамида SABC, в основании которой лежит правильный треугольник ABC, а высота SM пирамиды падает в середину ребра BC. N – такая точка на ребре AC, что AN:NC=3:1.

- а) Докажите, что прямая AC перпендикулярна плоскости SMN.
- б) Пусть K середина ребра AC, AB=2, а боковое ребро AS пирамиды наклонено под углом 60° к основанию. Найдите расстояние между прямыми BK и SN.

Задача 14

Решите неравенство

$$\frac{12 \cdot x^{\log_{0,5} x} - 129}{0, 25^{\log_2^2 x} - 4} \leqslant 32$$

Задача 15

Рыжий Боб взял кредит на n лет под 10% годовых. Первые $\frac{n}{3}$ лет Боб вносит платежи так, чтобы долг каждый год уменьшался на $10\,000$ рублей, следующие $\frac{n}{3}$ лет — на $20\,000$ рублей, а последние $\frac{n}{3}$ лет — на $30\,000$ рублей. На какое наименьшее количество лет Бобу нужно взять кредит, чтобы переплата по кредиту составила не менее $378\,000$ рублей?

Задача 16

Окружность проходит через точки В и С выпуклого четырехугольника ABCD и касается его стороны AD в точке P, причем стороны AB и CD окружность пересекает в точках K и L соответственно. Известно, что BC = PL.

- а) Докажите, что $PC = \sqrt{BP \cdot CD}$.
- б) Найдите AK, если также известно, что PK = BC = 6, PD = 8, а радиус данной окружности равен 5.

Задача 17

Найдите все значения параметра \mathfrak{a} , при каждом из которых линии $y=\mathfrak{a}|x-2|+|\mathfrak{a}|-2$ и $y=\frac{\mathfrak{a}}{2}$ ограничивают многоугольник, площадь которого не более 0,5.

Задача 18

В каждой клетке таблицы 3×3 написано натуральное число, причем все числа попарно различны. Рассмотрим шесть троек чисел: три тройки чисел, стоящих в одной строке, каждая взята слева направо или справа налево, и три тройки чисел, стоящих в одном столбце, каждая взята сверху вниз или снизу вверх.

Известно, что в каждой тройке числа образуют либо арифметическую, либо геометрическую прогрессию, причём имеется хотя бы одна тройка, образующая геометрическую прогрессию.

- а) Могут ли все шесть троек образовывать геометрическую прогрессию?
- б) Предположим, что тройки чисел в каждой из трёх строк образуют арифметическую прогрессию, а тройки в каждом из трёх столбцов геометрическую. Докажите, что знаменатели геометрических прогрессий равны.
- в) Может ли в данной таблице оказаться ровно одна тройка чисел, образующих геометрическую прогрессию?
- * Приведите пример для двух троек чисел, образующих геометрические прогрессии.