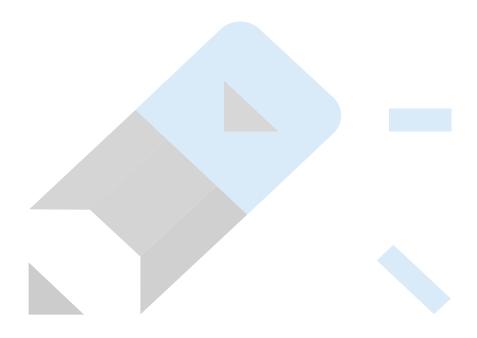
Образовательный проект «Школково»

Физика 2022-2023

Кондрашкин Артем Витальевич



Задачи ЕГЭ прошлых лет. Квантовая физика

Нашли ошибку?

Содержание

1	Фотоны		2
2	Фотоэффект		8
3	Постулаты Бора		17
4	Ядерные реакции		20

1 Фотоны

Задача 1.

Вебинар: Фотоны. Корпускулярно-волновой дуализм света. Давление света 15 янв. $2023\ 17:00$

Таймкод: 00:38:15

Космический корабль, находящийся в состоянии покоя, обстреливает неприятеля из лазерной пушки, которая в течение одного залпа испускает n=10 коротких световых импульсов с энергией $E_0=3$ кДж каждый. Какую скорость v приобретет корабль после залпа пушки, если масса корабля M=10 т? Скорость света $c=3\cdot 10^8$ м/с. Влиянием всех небесных тел пренебречь.

 $BMK M\Gamma Y$

 $0 = 10^{8} \text{ m}$

Задача 2.

Вебинар: Фотоны. Корпускулярно-волновой дуализм света. Давление света 15 янв. $2023\ 17:00$

Таймкод: 00:44:27

Каплю чёрной жидкости теплоёмкостью $c=2130~\rm Дж/кг\cdot K$ и массой $m=50~\rm mr$ освещают пучком лазерного света с длиной волны $\lambda=700~\rm ms$. При этом капля начинает нагреваться со скоростью 1 градус в секунду. Сколько фотонов лазерного света попадает на каплю ежесекундо?

Основная волна 2006

 $\frac{1}{\sqrt{4}} \frac{\partial u}{\partial u} = u$

Задача 3.

Вебинар: Фотоны. Корпускулярно-волновой дуализм света. Давление света 15 янв. $2023\ 17:00$

Таймкод: 02:09:31

Лазер испускает световой импульс с энергией W=3 мДж и длительностью $\tau=10$ нс. Свет от лазера падает перпендикулярно на плоское зеркало площадью $S=10~{\rm cm}^2$. Какое среднее давление окажет свет на зеркало?

Досрочная волна 2014

$$P = \frac{2W}{cS_T} = 2 \cdot 10^3 \text{ Ha}$$

Задача 4.

Вебинар: Фотоны. Корпускулярно-волновой дуализм света. Давление света 15 янв. $2023\ 17:00$

Таймкод: 01:25:40

Для межпланетных полётов в космосе предлагают использовать «солнечный парус» — большое зеркало, расположенное перпендикулярно солнечным лучам. При их отражении от этого зеркала возникает сила в направлении падающих лучей, которая может ускорять космический корабль. Оцените эту силу F при следующих предположениях: площадь полностью отражающего свет зеркала равна $S=1000~{\rm m}^2$, а солнечная постоянная в месте нахождения корабля с зеркалом $C=1,5~{\rm kBt/m}^2$. Солнечная постоянная — это энергия фотонов, падающих в единицу времени на единицу площади поверхности, перпендикулярной лучам света от Солнца.

$$E = \frac{2Q}{QQ} = 10^{-2} H$$

Задача 5.

Вебинар: Давление света. Задачи второй части+гробы 01 фев. 2023 16:00 Таймкод: 01:01:45

Солнечная батарея космической станции площадью $50~{\rm M}^2$ ориентирована перпендикулярно направлению на Солнце. Она отражает половину падающего на нее солнечного излучения. Чему равна сила давления (в мкН) излучения на батарею, если мощность излучения, падающего на $1~{\rm M}^2$ поверхности, равна $1,4~{\rm KBT}$?

Черноуцан

$$F = 1, \frac{Q}{c}S = 350 \text{ MKH}$$

Задача 6.

Вебинар: Квантовая механика. Волновая природа материи. Волны Де Бройля 19 март 2023 17:00

Таймкод: 00:12:00

Пучок электронов, пройдя узкую щель, дал на фотопластинке такую же дифракционную картину, как и монохроматическое излучение с длиной волны $\lambda=55$ нм. Найти скорость v электронов в пучке. Масса электрона $m=9,1\cdot 10^{-31}$ кг, постоянная Планка $h=6,62\cdot 10^{-34}$ Дж·с.

ВМК МГУ

 $\frac{\gamma uu}{y} = a$

Задача 7.

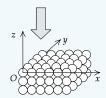
Вебинар: Квантовая механика. Волновая природа материи. Волны Де Бройля 19 март 2023 17:00

Таймкод: 00:12:00

Пучок электронов, пройдя узкую щель, дал на фотопластинке такую же дифракционную картину, как и монохроматическое излучение с длиной волны $\lambda=55$ нм. Найти скорость v электронов в пучке. Масса электрона $m=9,1\cdot 10^{-31}$ кг, постоянная Планка $h=6,62\cdot 10^{-34}$ Дж·с.

 $BMK M\Gamma Y$

 $\frac{\gamma uu}{y} = a$


Задача 8.

Вебинар: Квантовая механика. Волновая природа материи. Волны Де Бройля 19 март 2023 17:00

Таймкод: 00:15:23

При исследовании структуры кристаллической решетки пучок электронов, имеющих одинаковую скорость, направляется перпендикулярно поверхности кристалла вдоль оси Oz, как показано на рисунке. После взаимодействия с кристаллом отраженные от первого слоя электроны движутся в определенных направлениях, образуя дифракционные максимумы. В плоскости Ozx имеется такой максимум первого порядка. С какой скоростью движутся электроны, если первый дифракционный максимум соответствует отклонению электронов на угол $\alpha=50^\circ$ от первоначального направления, а период молекулярной решетки составляет 0.215 нм?

 $o/M = 0.1 \cdot h, h = \frac{hh}{\sin h} = v$

Задача 9.

Вебинар: №29 - Квантовая механика. Фотоэффект и давление света 26 март 2023 19:00

Таймкод: 00:13:50

Излучением лазера с длиной волны $3,3\cdot 10^{-7}$ м за время $1,25\cdot 10^4$ с был расплавлен лед массой 1 кг, взятый при температуре 0°, и полученная вода была нагрета на 100° . Сколько фотонов излучает лазер за 1 с? Считать, что 50% излучения поглощается веществом.

Основная волна 2007

Основная волна 2014

$$N = \frac{\eta hct}{m(L + c\Delta t)\lambda\tau}$$

Задача 10.

Вебинар: №29 - Квантовая механика. Фотоэффект и давление света 26 март 2023

Таймкод: 01:06:51

На площадку падает зелёный свет от лазера. Лазер заменяют на другой, который генерирует красный свет. Мощность излучения, падающего на площадку, в обоих случаях одна и та же. Как меняется в результате такой замены число фотонов, падающих на площадку в единицу времени? Укажите закономерности, которые Вы использовали при обосновании своего ответа.

Задача 11.

Вебинар: №29 - Квантовая механика. Фотоэффект и давление света 26 март 2023 19:00

Таймкод: 01:11:03

Точечный источник монохроматического света мощностью 200 Вт находится на расстоянии 5 м от пластинки площадью $10~{\rm mm}^2$, на которую ежесекундно падают $1,6\cdot 10^{13}$ фотонов. Найдите длину волны излучаемого света. Источник распределяет свет во все стороны. Площадь сферы $S=4\pi R^2$.

 $M^{7-01 \cdot \delta} = \lambda$

Задача 12.

Вебинар: №29 - Квантовая механика. Фотоэффект и давление света 26 март 2023 19:00

Таймкод: 01:26:35

Давление света от Солнца, который падает перпендикулярно на абсолютно чёрную поверхность, на орбите Земли составляет около $P=5\cdot 10^{-6}$ Па. Оцените концентрацию n фотонов в солнечном излучении, считая, что все они имеют длину волны $\lambda=500$

1,3.10

Задача 13.

Вебинар: План подготовки к ЕГЭ-2023 по физике за 2 месяца. Обзор 2-го варианта ДОСРОКА ЕГЭ 2023

Таймкод: 01:10:30

Известно, что реактор испускает $3 \cdot 10^{18}$ альфа-частиц, обладающих импульсом 10^{19} кг·м/с, каждую секунду. Определите, чему равна энергия, выделяемая реактором за 1 час, если масса альфа-частицы $6,6 \cdot 10^{-27}$ кг. Считать, что количество частиц, испускаемых реактором за 1 секунду, постоянно, релятивистскими эффектами можно пренебречь.

$$\tau \cdot \frac{1}{2\Delta} \cdot \frac{m\zeta}{m\zeta} = 3$$

Задача 14.

Вебинар: Разбор варианта №9 из сборника ЕГЭ 2023 по физике - М.Ю. Демидова (30 вариантов) 06 нояб. 2022 19:00

Таймкод: 02:00:53

На расстоянии 6 м от точечного источника монохроматического излучения с длиной волны 0,6 мкм перпендикулярно падающим луча расположена пластинка площадью 8 мм², на которую падает ежесекундно $6\cdot 10^{12}$ фотонов. Какова мощность излучения источника, если он излучает свет одинаково во все стороны? Площадь сферы радиусом R рассчитывается по формуле: $S=4\pi R^2$.

$$B = \frac{X}{2} \frac{S}{2} = I12 B$$

Задача 15.

Вебинар: Разбор второй части с оформлением из варианта \mathbb{N}_{5} - М.Ю.Демидова (10 вариантов) 19 март 2023 19:00

Таймкод: 01:41:30

Электромагнитное излучение с длиной волны $6,6\cdot 10^{-7}$ м используется для нагревания воды. На сколько градусов нагреется 50 г воды за 3,5 мин, если источник излучает 10^{20} фотонов за 1 с? Считать, что излучение полностью поглощается водой, а теплопотерь в окружающую среду нет.

$$\nabla t = \frac{\gamma cm}{N t V} = 30^{\circ} C$$

Задача 16.

Для разгона космических аппаратов и коррекции их орбит предложено использовать солнечный парус — скрепленный с аппаратом легкий экран большой площади из тонкой пленки, которая зеркально отражает солнечный свет. Рассчитайте массу космического аппарата, снабженного парусом в форме квадрата размерами 100 м х 100 м, которому давление солнечных лучей сообщает ускорение $10^{-4}g$. Мощность W солнечного излучения, падающего на 1 м^2 поверхности, перпендикулярной солнечным лучам, составляет 1370 Bt/m^2 .

$$\frac{\partial v}{SMZ} = u$$

Задача 17.

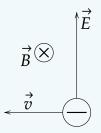
Источник, создающий монохроматический пучок параллельных лучей, за время $\Delta t=8\cdot 10^{-4}$ с излучает $N=5\cdot 10^{14}$ фотонов. Лучи падают по нормали на площадку S=0,7 см² и создают давление $P=1,5\cdot 10^{-5}$ Па. При этом 40% отражается, а 60% поглощается. Определите длину волны излучения.

$$M^{7-01} \cdot \delta_{,\delta} = \frac{\Lambda N}{2 \Delta^{2} q} \cdot (q_{\text{TO}} + n_{\text{TOII}} n) = \Lambda$$

Задача 18.

При изучении давления света проведены два опыта с одним и тем же лазером. В первом опыте свет лазера направляется на пластинку, покрытую сажей, а во втором — на зеркальную пластинку такой же площади. В обоих опытах пластинки находятся на одинаковом расстоянии от лазера и свет падает перпендикулярно поверхности пластинок. Как изменится сила давления света на пластинку во втором опыте по сравнению с первым? Ответ поясните, указав, какие физические закономерности Вы использовали для объяснения.

2 Фотоэффект

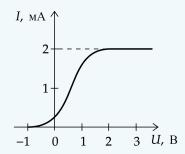

Задача 19.

Вебинар: Фотоэффект. Сложные задачи 29 янв. 2023 17:00 Таймкод: 00:01:25

Вылетевший при фотоэффекте с катода электрон попадает в электромагнитное поле как показано на рисунке. Вектор напряжённости электрического поля направлен вертикально вверх. Вектор магнитного поля направлен от наблюдателя. Определите, при каких значениях напряжённости электроны, вылетевшие с максимально возможной скоростью, отклоняются вверх. Частота падающего на катод света $\nu=6,2\cdot 10^{14}$ Гц Работа выхода $A_{\rm вых}=2,39$ эВ Магнитная индукция поля B=0,5 Тл.

Основная волна 2019

150 kB/m


Задача 20.

Вебинар: Фотоэффект. Сложные задачи 29 янв. 2023 17:00 Таймкод: 00:15:20

В опыте по изучению фотоэффекта свет частотой $\nu=6,1\cdot 10^{14}$ Γ ц падает на поверхность катода, в результате чего в цепи возникает ток. График зависимости силы тока I от напряжения U между анодом и катодом приведён на рисунке. Какова мощность падающего света , если в среднем одиниз 20 фотонов, падающих на катод, выбивает электрон?

Демоверсия 2018

 $0.1 B_T$

Задача 21.

Вебинар: Фотоэффект. Сложные задачи 29 янв. 2023 17:00 Таймкод: 00:25:53

Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает электрон из металлической пластинки (катода), помещенной в сосуд, из которого откачан воздух. Электрон разгоняется однородным электрическим полем напряженностью $E=5\cdot 10^4~{\rm B/m}$ Какой путь пролетел в этом электрическом поле электрон, если он приобрел скорость $v=3\cdot 10^6~{\rm m/c}$?

$$M_{\nu} = \frac{10^{-4}}{10^{-4}} \approx 5.10^{-4}$$

Задача 22.

Вебинар: Разбор варианта N1/10 из сборника ЕГЭ 2023 по физике - М.Ю. Демидова (10 вариантов) 27 фев. 2023 20:00

Таймкод: 01:25:40

Вебинар: Фотоэффект. Сложные задачи 29 янв. 2023 17:00

Таймкод: 00:37:25

Металлическая пластина облучается светом частотой $\nu=1,6\cdot 10^{15}$ Гц. Вылетающие из пластины фотоэлектроны попадают в однородное электрическое поле напряжённостью E=130 В/м, причём вектор напряжённости \vec{E} поля направлен к пластине перпендикулярно её поверхности. Измерения показали, что на расстоянии S=10 см от пластины максимальная кинетическая энергия фотоэлектронов равна $E_{k1}=15,9$ эВ. Определите работу выхода электронов из данного металла.

Основная волна 2013

Основная волна 2016

 $\text{ж} \text{Д}^{\text{el}} = 0.01 \cdot \text{de}, \text{de} \approx \text{x}_{\text{idg}} A$

Задача 23.

Вебинар: Разбор варианта №3 из сборника ЕГЭ 2023 по физике - М.Ю. Демидова

(30 вариантов) 16 окт. 2022 19:00

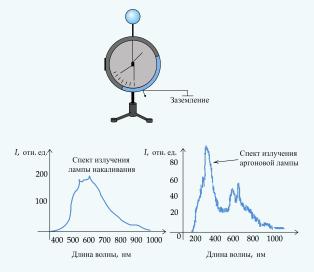
Таймкод: 02:13:00

Вебинар: Фотоэффект. Сложные задачи 29 янв. 2023 17:00

Таймкод: 00:44:55

В вакууме находятся два кальциевых электрода, к которым подключён конденсатор ёмкостью 4000 пФ. При длительном освещении катода светом фототок между электродами, возникший вначале, прекращается, а на конденсаторе появляется заряд $5,5\cdot 10^{-9}$ Кл. «Красная граница» фотоэффекта для кальция $\lambda_0=450$ нм. Определите частоту световой волны, освещающей катод. Ёмкостью системы электродов пренебречь.

Демонстрационный вариант 2016


$$v = \frac{c}{\lambda_0} + \frac{cq}{Ch} \approx 10^{15} \text{ FM}$$

Задача 24.

Вебинар: Фотоэффект. Сложные задачи 29 янв. 2023 17:00 Таймкод: 01:00:43

Учащимся в классе при электрическом освещении лампами накаливания показали опыт: цинковый шар электрометра зарядили эбонитовой палочкой, потёртой о сукно. При этом стрелка электрометра отклонилась, заняв положение, указанное на рисунке, и в дальнейшем не меняла его. Когда на шар направили свет аргоновой лампы, стрелка электрометра быстро опустилась вниз. Объясните разрядку электрометра, учитывая приведённые спектры (зависимость интенсивности света I от длины волны λ) лампы накаливания и аргоновой лампы. Красная граница фотоэффекта для цинка $\lambda_{\rm кp}=290$ нм.

 $0.1~\mathrm{Br}$

Задача 25.

Вебинар: Фотоэффект. Сложные задачи 29 янв. 2023 17:00 Таймкод: 01:14:53

Проводя облучение катода фотоэлемента пучком света мощностью $N_1=1,5$ мВт с длиной волны $\lambda_1=400$ нм, измерили величину тока насыщения. Затем катод фотоэлемента начали облучать светом с длиной волны $\lambda_2=500$ нм. Какой должны быть мощность N_2 падающего на катод света, чтобы ток насыщения достигает той же величины, что и в первом случае? Квантовый выход фотоэффекта, т.е. отношение числа вырванных из катода электронов к числу падающих на его поверхность фотонов, в первом случае $\eta=0,35,$ а во втором случае равен $\eta_2=0,3.$

$$N_2 = N_1 \frac{\lambda_1 \eta_1}{\lambda_2 \eta_2}$$

Задача 26.

Вебинар: №18, 19, 29 из ЕГЭ по физике. Начало квантовой физики. Фотоны, фотоэффект 26 нояб. 2022 19:00

Таймкод: 01:47:35

Катод фотоэлемента облучается светом с длиной волны $\lambda=0,35$ мкм. Какова может быть максимальная величина тока фотоэлемента I, если поглощаемая световая мощность составляет N=2 мВт? Постоянная Планка $h=6,62\cdot 10^{-34}$ Дж· с, модуль заряда электрона $e=1,6\cdot 10^{-19}$ Кл, скорость света $c=3\cdot 10^8$ м/с.

$$I = \frac{N\lambda e}{N\lambda} = 0,56 \text{ MA}$$

Задача 27.

Вебинар: №18, 19, 29 из ЕГЭ по физике. Начало квантовой физики. Фотоны, фо-

тоэффект 26 нояб. 2022 19:00

Таймкод: 01:56:05

Вебинар: №29 - Квантовая механика. Фотоэффект и давление света 26 март 2023

19:00

Таймкод: 00:39:01

В опыте по изучению фотоэффекта катод освещается жёлтым светом, в результате чего в цепи возникает ток (рисунок 1). Зависимость показаний амперметра I от напряжения U между анодом и катодом приведена на рисунке 2. Используя законы фотоэффекта и предполагая, что отношение числа фотоэлектронов к числу поглощённых фотонов не зависит от частоты света, объясните, как изменится представленная зависимость I(U), если освещать катод зелёным светом, оставив мощность поглощённого катодом света неизменной.

Демонстрационный вариант 2018

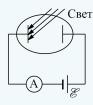


Рис. 1

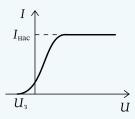


Рис. 2

точка отрыва графика от горизонтальной оси U сдвинется влево, горизонтальная асимптота гори

Задача 28.

Вебинар: №29 - Квантовая механика. Фотоэффект и давление света 26 март 2023 19:00

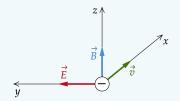
Таймкод: 00:27:25

Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает электрон из металлической пластинки (катода), помещенной в сосуд, из которого откачан воздух. Электрон разгоняется однородным электрическим полем напряженностью . Пролетев путь $S=5\cdot 10-4$ м, он приобретает скорость $v=3\cdot 10^6$ м/с. Какова напряженность электрического поля? Релятивистские эффекты не учитывать.

Основная волна 2009

$$E = \frac{\Sigma_{eS}}{2}$$

Задача 29.


Вебинар: №29 - Квантовая механика. Фотоэффект и давление света 26 март 2023 19:00

Таймкод: 00:50:30

Электроны, вылетевшие в положительном направлении оси ОХ под действием света с катода фотоэлемента, попадают в электрическое и магнитное поля (см. рисунок). Какой должна быть работа выхода A с поверхности фотокатода, чтобы в момент попадания самых быстрых электронов в область полей действующая на них сила была направлена вдоль оси ОУ в положительном направлении? Частота света $6, 5 \cdot 10^{14}$ Гц, напряжённость электрического поля $3 \cdot 10^2$ В/м, индукция магнитного поля 10^{-3} Тл. Досрочная волна 2013

Основная волна 2016

3ε 4.2

Задача 30.

Вебинар: №29 - Квантовая механика. Фотоэффект и давление света 26 март 2023 19:00

Таймкод: 01:03:07

Фотокатод, покрытый кальцием (работа выхода $A=4,42\cdot 10^{-19}$ Дж), освещается светом с длиной волны $\lambda=300$ нм. Вылетевшие с катода электроны попадают в однородное магнитное поле с индукцией $B=8,3\cdot 10^{-4}$ Тл перпендикулярно линиям индукции этого поля. Каков максимальный радиус окружности R, по которой движутся электроны?

Основная волна 2010

M ^ε-01 · 7 , 4

Задача 31.

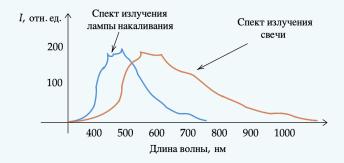
Вебинар: №29 - Квантовая механика. Фотоэффект и давление света 26 март 2023 19:00

Таймкод: 01:31:45

Для увеличения яркости изображения слабых источников света используется вакуумный прибор - электронно-оптический преобразователь. В этом приборе фотоны, падающие на катод, выбивают из него фотоэлектроны, которые ускоряются разностью потенциалов $\Delta U=15000$ В и бомбардируют флуоресцирующий экран, рождающий вспышку света при попадании каждого электрона. Длина волны для падающего на катод света $\lambda_1=820$ нм, а для света, излучаемого экраном, $\lambda_2=410$ нм. Какое количество k фотонов, падающих на катод, приходится в среднем на один выбитый фотоэлектрон, если прибор увеличивает энергию светового излучения, падающего на катод, в N=1000 раз? Работу выхода электронов $A_{\rm вых}$ принять равной 1 эВ. Считать, что энергия электронов переходит в энергию света без потерь.

Основная волна 2009

Основная волна 2014


 $k = \frac{Nhc}{E_2\lambda_1}$

Задача 32.

Вебинар: Разбор заданий досрочного ЕГЭ по физике 30 март 2023 17:00 Таймкод: 01:24:10

Учащимся в классе при электрическом освещении лампами накаливания показали опыт: цинковый шар электрометра зарядили эбонитовой палочкой, потёртой о сукно. При этом стрелка электрометра отклонилась, заняв положение, указанное на рисунке, и в дальнейшем не меняла его. Когда на шар направили свет свечи, стрелка электрометра быстро опустилась вниз. Объясните разрядку электрометра, учитывая приведённые спектры (зависимость интенсивности света I от длины волны λ) лампы накаливания и свечи. Красная граница фотоэффекта для цинка $\lambda_{\rm kp}=290$ нм.

 $k = \frac{Nhc}{E_2\lambda_1}$

Задача 33.

Вебинар: Разбор варианта $\mathbb{N}1$ из сборника ЕГЭ 2023 по физике - М.Ю. Демидова (30 вариантов) 09 окт. 2022 19:00

Таймкод: 02:01:27

Фотокатод с работой выхода $4,42\cdot 10^{-19}$ Дж освещается монохроматическим светом с частотой 10^{15} Гц. Вылетевшие из катода электроны попадают в однородное магнитное поле с индукцией $5\cdot 10^{-4}$ Тл перпендикулярно линиям индукции этого поля и движутся по окружностям. Каков максимальный радиус такой окружности?

$$M \approx 788 \approx \frac{(N-vh)m^2 \sqrt{2}}{4}$$

Задача 34.

Вебинар: Разбор варианта №7 из сборника ЕГЭ 2023 по физике - М.Ю. Демидова (30 вариантов) 30 окт. 2022 19:00

Таймкод: 01:54:00

Металлическая пластина облучается светом частотой $\nu=1,6\cdot 10^{15}$ Гц. Работа выхода электронов из данного металла равна 3,7 эВ. Вылетающие из пластины фотоэлектроны попадают в однородное электрическое поле напряжённостью 130 В/м, причём вектор напряженности \vec{E} направлен к пластине перпендикулярно её поверхности. Какова максимальная кинетическая энергия фотоэлектронов на расстоянии 10 см от пластины?

Bε 9,31

Задача 35.

Вебинар: Разбор варианта №27 из сборника ЕГЭ 2023 по физике - М.Ю. Демидова (30 вариантов) 12 фев. 2023 19:00

Таймкод: 01:53:15

На плоскую цинковую пластинку ($A_{\text{вых}}=3,75$ эВ) падает электромагнитное излучение с длиной волны 0,3 мкм. Какова напряженность задерживающего однородного электрического поля, вектор напряженности которого перпендикулярен пластине, если фотоэлектрон может удалиться от поверхности пластинки на максимальное расстояние d=2,5 мм?

150 B/M

Задача 36.

Вебинар: Разбор варианта №29 из сборника ЕГЭ 2023 по физике - М.Ю. Демидова (30 вариантов) 21 фев. 2023 16:00

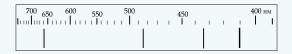
Таймкод: 01:50:50

Фотоэлектроны, выбитые монохроматическим светом из металла с работой выхода $A_{\text{вых}}=1,89$ эВ, попадают в однородное электрическое поле E=100 В/м. Какова частота света ν , если длина тормозного пути у фотоэлектронов, чья начальная скорость максимальна и направлена вдоль линий напряженности поля, составляет d=8,7 мм?

Задача 37.

При увеличении в 2 раза частоты света, падающего на поверхность металла, запирающее напряжение для фотоэлектронов увеличилось в 3 раза. Первоначальная частота падающего света была равна $0,75\cdot 10^{15}$ Гц. Какова длина волны, соответствующая "красной границе" фотоэффекта для этого металла?

3 Постулаты Бора


Задача 38.

Вебинар: Физика атома. Линейчатые спектры. Постулаты Бора. Вторая часть 18 фев. 2023 19:00

-Таймкод: 00:20:20

На рисунке приведены четыре линии спектра излучения водорода, соответствующие переходу электронов в атоме водорода с более высоких энергетических уровней на второй. Определите, переходу с какого уровня на второй соответствует самая левая линия спектра? Энергию электрона на n-ом уровне атома водорода с хорошей точностью можно определить по формуле $E_n = \frac{-13,6}{n^2}$ эВ, где n=1,2,3.... Изобразите этот переход атома водорода из одного энергетического состояния в другое схематически.

8

Задача 39.

Вебинар: Физика атома. Линейчатые спектры. Постулаты Бора. Вторая часть 18 фев. $2023\ 19:00$

Таймкод: 00:27:45

Уровни энергии электрона в атоме водорода задаются формулой $E_n=-13,6/n^2$ эВ, где n=1,2,3... При переходе атома из состояния E_2 в состояние E_1 атом испускает фотон. Попав на поверхность фотокатода, фотон выбивает фотоэлектрон. Длина волны света, соответствующая красной границе фотоэффекта для материала поверхности фотокатода, $\lambda_{\rm kp}=300$ нм. Чему равна максимально возможная кинетическая энергия фотоэлектрона?

 $E = 9,72 \cdot 10^{-19} \, \text{Дж}$

Задача 40.

Вебинар: Физика атома. Линейчатые спектры. Постулаты Бора. Вторая часть 18

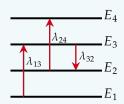
фев. 2023 19:00 Таймкод: 00:34:10

Вебинар: Физика атома. Постулаты Бора. Линейчатые спектры 27 нояб. 2022 17:00 Таймкод: 01:02:20

Значения энергии электрона в атоме водорода задаются формулой $E_n=-13,6/n^2$ эВ, где n=1,2,3... При переходе с верхнего уровня энергии на нижний атом излучает фотон. Переходы с верхних уровней на уровень с n=1 образуют серию Лаймана; на уровень с n=2 – серию Бальмера; на уровень с n=3 – серию Пашена и т.д. Найдите отношение минимальной частоты фотона в серии Бальмера к максимальной частоте фотона в серии Пашена.

₽/9

Задача 41.

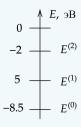

Вебинар: Физика атома. Линейчатые спектры. Постулаты Бора. Вторая часть 18

фев. 2023 19:00 Таймкод: 00:43:00

Вебинар: Физика атома. Постулаты Бора. Линейчатые спектры 27 нояб. 2022 17:00 Таймкод: 01:12:16

На рисунке изображены энергетические уровни атома и указаны длины волн фотонов, излучаемых и поглощаемых при переходах с одного уровня на другой. Экспериментально установлено, что минимальная длина волны для фотонов, излучаемых при переходах между этими уровнями, равна $\lambda_0=250$ нм. Какова величина λ_{13} , если $\lambda_{32}=545$ нм, $\lambda_{24}=400$ нм?

мн 008


Задача 42.

Таймкод: 00:43:00

Вебинар: Физика атома. Линейчатые спектры. Постулаты Бора. Вторая часть 18 фев. 2023 19:00

Предположим, что схема энергетических уровней атомов некоторого вещества имеет вид, показанный на рисунке, и атомы находятся в состоянии с энергией $E^{(1)}$. Электрон, столкнувшись с одним их таких атомов, отскочил, приобретя некоторую дополнительную энергию. Импульс электрона после столкновения с покоящимся атомом оказался равным $1, 2 \cdot 10-24$ кг·м/с. Определите кинетическую энергию электрона до столкновения. Возможностью испускания света атомом при столкновении с электроном пренебречь.

 $E = 2, 3 \cdot 10^{-19} \, \text{Дж}$

Задача 43.

Вебинар: Физика атома. Линейчатые спектры. Постулаты Бора. Вторая часть 18 фев. $2023\ 19:00$

Таймкод: 00:43:00

Покоящийся атом водорода массой $1,679 \cdot 10^{-27}$ кг излучает фотон с энергией $16,32 \cdot 10^{-19}$ Дж в результате перехода электрона из возбуждённого состояния в основное. В результате отдачи атом начинает двигаться поступательно в сторону, противоположную фотону. Найдите кинетическую энергию атома, если его скорость мала по сравнению со скоростью света.

ЕГЭ по физике 2013. Основная волна

жД ⁷²⁻01.18,8

Задача 44.

Вебинар: Физика атома. Линейчатые спектры. Постулаты Бора. Вторая часть 18

фев. 2023 19:00 Таймкод: 01:07:23

Вебинар: Физика атома. Постулаты Бора. Линейчатые спектры 27 нояб. 2022 17:00 Таймкод: 01:12:16

При падении света на поверхность пластины из неё вылетают фотоэлектроны, имеющие скорость $v=2000~{\rm km/c}$. Затем этим же светом начинают облучать атомы водорода, вледствие чего они ионизируются. Какую скорость будут иметь электроны, вылетающие из ионизированных атомов водорода, если работа выхода равна A=5,3 эВ, а энергия ионизации атома водорода составляет $E_{\rm u}=13,6$ эВ?

 10^6 m/c

4 Ядерные реакции

Задача 45.

Вебинар: Ядерные реакции. Радиоактивный распад. Вторая часть 05 март 2023 17:00

Таймкод: 00:09:33

Радиоактивный изотоп $^{22}_{11}$ Nа при каждом акте распада излучается один γ -квант с энергией $E_{\gamma}=2,05\cdot 10^{-13}$ Дж. Определить энергию E, выделяющуюся за время t=45 мин. при распаде m=25 г этого вещества. Период полураспада T=2,6 года.

ждМ 2,8

Задача 46.

Вебинар: Ядерные реакции. Радиоактивный распад. Вторая часть 05 март 2023 17:00

Таймкод: 00:52:10

В открытый контейнер объёмом 80 мл поместили изотоп полония- 210^{210}_{84} Ро. Затем контейнер герметично закрыли. Изотоп полония радиоактивен и претерпевает альфараспад с периодом полураспада примерно 140 дней, превращаясь в стабильный изотоп свинца. Через 5 недель давление внутри контейнера составило $1, 3 \cdot 10^5$ Па. Какую массу полония первоначально поместили в контейнер? Температура внутри контейнера поддерживается постоянной и равна $45^{\circ}C$. Атмосферное давление равно 10^5 Па.

$$\frac{\eta V(0q - q)}{(7 - 2 - 1) \eta TR} = m$$

Задача 47.

Вебинар: Ядерные реакции. Радиоактивный распад. Вторая часть 05 март 2023

17:00

Таймкод: 01:18:03

Вебинар: Физика атомного ядра. Ядерные реакции. Радиоактивность 28 нояб. 2022

18:00

Таймкод: 01:30:20

Вебинар: Тренировочный вариант от Школково №3 по физике | ЕГЭ 2023 02 окт.

2022 19:00

Таймкод: 01:47:57

Определите коэффициент полезного действия атомной электростанции, расходующей за неделю уран- 235_{92}^{235} U массой 1,4 кг, если ей мощность равна 38 МВт. При делении одного ядра урана-235 выделяется энергия 200 МэВ.

Задача 48.

Вебинар: №29 - Пациент с радиоактивным препаратом. Задача с реального ЕГЭ 2012, 2021.

Пациенту ввели внутривенно дозу раствора, содержащего изотоп Na. Активность 1 ${\rm cm}^3$ этого раствора $a_0=2000$ распадов в секунду. Период полураспада изотопа равен $T{=}15{,}3$ ч. Через t=3 ч 50 мин активность 1 ${\rm cm}^3$ крови пациента стала $a=0{,}28$ распадов в секунду. Каков объём введённого раствора, если общий объём крови пациента V=6 л? Переходом ядер изотопа Na из крови в другие ткани организма пренебречь.

г№ 9-01

Задача 49.

Вебинар: Физика атомного ядра. Ядерные реакции. Радиоактивность 28 нояб. 2022 18:00

Таймкод: 01:17:50

Образец радиоактивного радия $^{224}_{88}$ Rа находится в закрытом сосуде, из которого откачан воздух. Ядра радия испытывают α -распад с периодом полураспада 3,6 суток. Определите число моль гелия в сосуде через 7,2 суток, если образец в момент его помещения в сосуд имел в своём составе $2,4\cdot 10^{23}$ атомов радия-224, а атомов гелия в сосуде не было.

апом 8,0

Задача 50.

Вебинар: №29 - Квантовая механика. Физика атома и ядра 28 март 2023 18:00

Таймкод: 00:46:17

Вебинар: Разбор варианта №25 из сборника ЕГЭ 2023 по физике - М.Ю. Демидова

(30 вариантов) 29 янв. 2023 19:00

Таймкод: 01:47:55

Ядро покоящегося нейтрального атома, находясь в однородном магнитном поле, испытывает α -распад. При этом рождаются α -частица и тяжелый ион нового элемента. Выделившаяся при α -распаде энергия ΔE целиком переходит в кинетическую энергию продуктов реакции. Трек α -частицы находится в плоскости, перпендикулярной направлению магнитного поля. Начальная часть трека напоминает дугу окружности радиусом R. Масса α -частицы равна m_{α} , ее заряд равен 2e, масса тяжелого иона равна M. Определите значение модуля индукции B магнитного поля.

$$B = \frac{1}{2er} \cdot \frac{1}{1 + \frac{m_{\alpha}}{M}} = B$$

Задача 51.

Вебинар: №29 - Квантовая механика. Физика атома и ядра 28 март 2023 18:00 Таймкод: 00:53:45

Радиоактивный препарат помещен в медный контейнер массой 0,5 кг. За 2 ч температура контейнера повысилась на 5,2 К. Известно, что данный препарат испускает α -частицы энергией 5,3 МэВ, причем энергия всех α -частиц полностью переходит во внутреннюю энергию. Найдите активность препарата A, т.е. количество α -частиц, рождающихся в нем за 1 с. Теплоемкостью препарата и теплообменом с окружающей средой пренебречь.

$$A = \frac{cm\Delta T}{E\Delta t} \approx 1, 7 \cdot 10^{11} \text{ c}^{-1}$$

Задача 52.

Вебинар: №29 - Квантовая механика. Физика атома и ядра 28 март 2023 18:00 Таймкод: 01:01:50

Свободный пион (π^0 -мезон) с энергией покоя 135 МэВ движется со скоростью V, которая значительно меньше скорости света. В результате его распада образовались два γ -кванта, причём один из них распространяется в направлении движения пиона, а второй — в противоположном направлении. Энергия первого γ -кванта на 10% больше, чем второго. Чему равна скорость пиона до распада?

58₽0,0

Задача 53.

Вебинар: Тренировочный вариант от Школково №1 по физике | ЕГЭ 2023 18 сент. 2022 19:00

Таймкод: 01:55:50

При распаде ядра радия 226 Rа вылетает α -частица со скоростью $v=1,5\cdot 10^7$ м/с. Найти, какую энергию уносят за время $\tau=1$ сутки α -частицы, образовавшиеся в результате распада m=1 мг радия. Период полураспада радия T=1600 лет. Другие продукты распада радия не учитывать.

$$E_{\sum} = \Delta N_{\text{pacn}} \cdot \frac{m_{He} v^2}{2} = \frac{m_0}{m_{Ra}} \cdot (1 - 2^{-\frac{\tau}{T}}) \cdot \frac{m_{He} v^2}{2} \approx 2,36 \text{ Lec}$$

Задача 54.

Вебинар: Тренировочный вариант от Школково №2 по физике | ЕГЭ 2023 25 сент. 2022 19:00

Таймкод: 02:08:25

 π^0 -мезон массой $2,4\cdot 10^{-28}$ кг распадается на два γ -кванта. Найдите модуль импульса одного из образовавшихся γ -квантов в системе отсчета, где первичный π^0 -мезон покоится.

$$p_0 = \frac{2}{5} = 3, 6 \cdot 10^{-20}$$
 kp m/c

